Spectral Analysis

How to process neural oscillatory signals

Peter Donhauser, PhD student, Baillet lab

Meg@Mcgill
Comprehensive Training
November 2015
Why spectral analysis?

- MEG signals contain a wide range of components
- Electrophysiology vs. BOLD: what is 'activity'?
Why spectral analysis?

- MEG signals contain a wide range of components
- Electrophysiology vs. BOLD: what is 'activity'?

BOLD fMRI example

Cross-correlation of BOLD with intra-cranial LFP recordings

Schöllvinck et al., PNAS (2010)
Basic concepts

- Frequency: (how fast?)
 - theta: (4-8 Hz)
 - beta: (13-25 Hz)
 - gamma: (80-120 Hz)

- Phase: (where?)
 - 0, π/2, π

- Power: (how strong?)

Time scale: 100 ms
Basic concepts

Cycle

Frequency (how fast?)

theta (4-8 Hz)

beta (13-25 Hz)

gamma (80-120 Hz)

Phase (where?)

π
0
π/2

Power (how strong?)

100 ms
Basic concepts

Cycle

Frequency (how fast?)

theta (4-8 Hz)

beta (13-25 Hz)

gamma (80-120 Hz)

Phase (where?)

\(\pi \rightarrow 0 \rightarrow \pi/2 \)

Power (how strong?)

100 ms
Basic concepts

Cycle

Frequency (how fast?)
theta (4-8 Hz)
beta (13-25 Hz)
gamma (80-120 Hz)

Phase (where?)
π, 0, π/2

Power (how strong)

100 ms
How to do it? Brainstorm!
How to do it? Brainstorm!

Which methods, which parameters do I choose?
Methods covered today

Two main groups:

• Estimation of spectral power (stationary) vs.
• Localization of Power in time & frequency
Methods covered today

Two main groups:

- Estimation of spectral power (stationary) vs.
- Localization of Power in time & frequency

Usage:

- Quality check (noise level)
- Resting-state dynamics
- Extended task periods
Methods covered today

Two main groups:

• Estimation of spectral power (stationary) vs.

• Localization of Power in time & frequency

Usage:

• Quality check (noise level)
• Resting-state dynamics
• Extended task periods

Usage:

• Task-induced responses
• Transient oscillatory phenomena (HFOs)
Methods covered today

Two main groups:

- Estimation of spectral power (stationary) vs.
- Localization of Power in time & frequency

Stationary:

- Fourier transform
- Power spectral density (Welch's method)
Methods covered today

Two main groups:

- Estimation of spectral power (stationary) vs.
- Localization of Power in time & frequency

Stationary:
- Fourier transform
- Power spectral density (Welch's method)

Time-resolved:
- Wavelet transform
- Filtering & Hilbert transform
Methods covered today

Two main groups:

• Estimation of spectral power (stationary) vs.

• Localization of Power in time & frequency

Short introduction to cross-frequency coupling measures

Example signal

- Concepts will be illustrated using the following signal
Example signal

- Concepts will be illustrated using the following signal
- MEG source signal from visual cortex
- 4 seconds
- Sampling frequency: 600 Hz
Example signal

- Concepts will be illustrated using the following signal

- MEG source signal from visual cortex
- 4 seconds
- Sampling frequency: 600 Hz
- Visual stimulus
Contents

Stationary:

• Fourier transform

• Power spectral density (Welch's method)

Time-resolved:

• Wavelet transform

• Filtering & Hilbert transform
(Fast) Fourier Transform, FFT

- Transforms a signal from time to frequency domain.
- Hugely important in many fields of science and engineering.
- Not so powerful in its raw form for estimating spectral components in neural signals
- BUT: forms the basis for many of the following methods
(De-) **Composing** a signal

\[
\begin{align*}
\text{Time} & \quad 0 \text{ sec} & \text{Time} & \quad 1 \text{ sec} \\
\text{Wave 1} & \quad + & \text{Wave 2} & \quad + \\
\text{Wave 3} & \quad + & \text{Result} & \quad =
\end{align*}
\]
(De-) Composing a signal
(De-) Composing a signal
(De-) Composing a signal
(De-) Composing a signal

- FFT output is symmetric, second half usually removed
- Peaks in frequency domain correspond to an oscillatory component in time domain
(De-) Composing a signal

- FFT output is symmetric, second half usually removed.
- Peaks in frequency domain correspond to an oscillatory component in time domain.
(De-)Composing a signal

- FFT output is symmetric, second half usually removed
- Peaks in frequency domain correspond to an oscillatory component in time domain
(De-) Composing a signal

- FFT output is symmetric, second half usually removed
- Peaks in frequency domain correspond to an oscillatory component in time domain
(De-) Composing a signal

- Number of samples in time = number of samples in frequency (1/2 without 'negative frequencies')
- Higher sampling rate can resolve higher frequencies
Fourier Transform

- We can see a peak in the alpha band (8-12 Hz)
Fourier Transform

We can see a peak in the alpha band (8–12 Hz)

- Sometimes helpful to display frequency axis in log-scale (see next)
Linear- vs. Log-scaled spectrum

Compare:

1 or 2 cycles per second

50 or 51 cycles per second
Linear- vs. Log-scaled spectrum

Sinusoids linearly spaced from 1 Hz to 17 Hz
Linear- vs. Log-scaled spectrum

Sinusoids log spaced from 1 Hz to 17 Hz
Fourier Transform

- We can see a peak in the alpha band (8-12 Hz)

- Sometimes helpful to display frequency axis in log-scale (see next)
Fourier Transform

- We can see a peak in the alpha band (8–12 Hz)
- Sometimes helpful to display frequency axis in log-scale (see next)
- Power usually decreases at higher frequencies
 - 1/f phenomenon
 - Log-scaling the power axis
Fourier Transform

- We can see a peak in the alpha band (8–12 Hz)
- Sometimes helpful to display frequency axis in log-scale (see next)
- Power usually decreases at higher frequencies
 - $1/f$ phenomenon
 - Log-scaling the power axis
- Raw FFT can be very noisy
 - see next
Contents

Stationary:
 • Fourier transform
 • Power spectral density (Welch's method)

Time-resolved:
 • Wavelet transform
 • Filtering & Hilbert transform
Power spectral density

Repeated averaging over sliding windows decreases noise in the estimation.

Resulting spectrum is less noisy.
PSD: effect of window size

- Window length determines frequency resolution
- Smaller window: lower resolution, more averaging/less noise
PSD: effect of window size

- Window length determines frequency resolution
- Smaller window: lower resolution, more averaging/less noise
PSD: effect of window size

- Window length determines frequency resolution
- Smaller window: lower resolution, more averaging/less noise
PSD: effect of window size

- Window length determines frequency resolution
- Smaller window: lower resolution, more averaging/less noise
PSD: effect of window size

- Window length determines frequency resolution
- Smaller window: lower resolution, more averaging/less noise
Contents

Stationary:

- Fourier transform
- Power spectral density (Welch's method)

Time-resolved:

- Wavelet transform
- Filtering & Hilbert transform
Time-frequency analysis

- Analysis of transient oscillatory activity
- Examples: auditory cortex / motor cortex
- Event-related synchronization vs. desynchronization

Spoken sentence, auditory cortex responses (Fontolan, Morillon et al., 2014)

Build-up of choice predictive activity in motor cortex (Donner et al., 2009)
Wavelet transform

Morlet wavelet (used in Brainstorm):

- Sine wave, power is modulated in time with a gaussian centered at time zero
- Serves as a 'template'
Wavelet transform

- Wavelet is swept over and 'compared with' the signal
- From this similarity measure we can estimate and plot the power over time
Wavelet transform

- Wavelet is contracted and expanded to estimate power over different center frequencies
Wavelet transform

- Wavelet is contracted and expanded to estimate power over different center frequencies

- Important: time and frequency resolution changes for different frequencies

 - Compare with PSD window length
Wavelet transform
Wavelet transform

Repeating this over a range of center frequencies produces a time-frequency map

- Repeating this over a range of center frequencies produces a time-frequency map
Wavelet transform

- Repeating this over a range of center frequencies produces a time-frequency map.

- Remember the $1/f$ phenomenon: high frequencies tend to have less power.
Wavelet transform

- Repeating this over a range of center frequencies produces a time-frequency map.

- Remember the 1/f phenomenon: high frequencies tend to have less power.

- Map can be normalized using a z-score based on the mean and std of a 'baseline period'.
Wavelet transform

- Repeating this over a range of center frequencies produces a time-frequency map.

- Remember the 1/f phenomenon: high frequencies tend to have less power.

- Map can be normalized using a z-score based on the mean and std of a 'baseline period'.
Wavelet transform

- Map can be normalized using a z-score based on the mean and std of a 'baseline period'
- What is the right baseline?!?
Wavelet transform

- Map can be normalized using a z-score based on the mean and std of a 'baseline period'

- What is the right baseline?!!
Wavelet transform

- Changing the parameters of the 'mother wavelet' affects time vs. Frequency resolution of the results
Wavelet transform

- Changing the parameters of the 'mother wavelet' affects time vs. Frequency resolution of the results
Evoked vs induced responses
Evoked vs induced responses
Evoked vs induced responses
Evoked vs induced responses

- Averaging
 - 10 trials
Evoked vs induced responses

- Averaging
 - 10 trials
 - 20 trials
Evoked vs induced responses

- Averaging
 - 10 trials
 - 20 trials
 - 100 trials
Contents

Stationary:
- Fourier transform
- Power spectral density (Welch's method)

Time-resolved:
- Wavelet transform
- Filtering & Hilbert transform
Hilbert transform

- Useful for estimating time-resolved power (or phase) in a pre-defined frequency band (e.g. Delta: 2–4 Hz)
Hilbert transform

- Useful for estimating time-resolved power (or phase) in a pre-defined frequency band (e.g. Delta: 2–4 Hz)

- Signal is first filtered in the specified band
Hilbert transform

- Useful for estimating time-resolved power (or phase) in a pre-defined frequency band (e.g. Delta: 2–4 Hz)
- Signal is first filtered in the specified band
- Envelope (power) is computed using the Hilbert transform
Hilbert transform

- 2 – 4 Hz
- 8 – 12 Hz
- 60 – 90 Hz
The hilbert transform can also extract the phase of the bandpassed signal in time.
The Hilbert transform can also extract the phase of the bandpassed signal in time.
The Hilbert transform can also extract the phase of the bandpassed signal in time.

Usage: phase-locking value, stimulus-brain coupling, phase-amplitude coupling

* All of that later in the day
Hilbert vs. Wavelet

- Hilbert method in BST uses FIR filters
- Important: frequency response of the bandpass filter
Hilbert vs. Wavelet

- Hilbert method in BST uses FIR filters
- Important: frequency response of the bandpass filter
- Wavelets more localized around center frequency
Defining frequency bands

- 'Based on the literature': many definitions
Defining frequency bands

• Should I collapse over frequency bands or keep the full spectrum?
 • Information might be lost (peaks)
Defining frequency bands

- Should I collapse over frequency bands or keep the full spectrum?
 - Sometimes necessary for reducing dimensionality (e.g. in source space)
 - Can increase sensitivity (due to averaging)
Cross-frequency Coupling

- Cross frequency coupling (CFC):
 - Interaction between oscillations at different frequency bands

- Several synchronized neuronal assemblies in the brain:
 - Each supports a frequency band of the network rhythm

- Relationship between these frequencies:
 - Interaction between local neural circuits
 - Changing of intrinsic properties in each circuit

- G. Buzsaki. Cerebral Cortex, 1996
Types of CFC

- Phase-phase coupling
- Amplitude-amplitude coupling
- Phase-amplitude coupling

Jirsa et al., Front. Neurosci., 2013
Cross-frequency Phase-amplitude Coupling

- Phase-amplitude coupling

Canolty and Night, Trends Cogn Sci, 2010
Cross-frequency Phase-amplitude Coupling

• Phase-amplitude coupling

✓ Plausible physiological mechanisms
 • Low frequency phase reflects local neuronal excitability
 • High frequency power increases reflect:
 – A general increase in population synaptic activity (broad-band power increase)
 – Selective activation of a connected neuronal subnetwork (narrow-band power increase)

✓ Functional correlations

Canolty and Night, Trends Cogn Sci, 2010
Functional Correlations

- Several studies have been conducted in this field
 - Phase of the low-frequency theta (4 to 8 hertz) rhythm modulates power in the high gamma (80 to 150 hertz) band

Measuring Cross-frequency Coupling

- Several algorithms available
 - Each proper for a particular case
 - No single method has been elected as a preferred standard so far
Measuring Cross-frequency Coupling

Available measures:

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Reference</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>The envelope to signal correlation</td>
<td>[Bruns and Eckhorn, 2004]</td>
<td>⭐️⭐️</td>
</tr>
<tr>
<td>PLV</td>
<td>Phase-locking value</td>
<td>[Vanhatalo et al., 2004]</td>
<td>⭐️⭐️</td>
</tr>
<tr>
<td>MVL</td>
<td>Mean vector length</td>
<td>[Canolty et al., 2006]</td>
<td>⭐️⭐️</td>
</tr>
<tr>
<td>GLM</td>
<td>The general linear model measure</td>
<td>[Penny et al., 2008]</td>
<td>⭐️⭐️</td>
</tr>
<tr>
<td>APSD</td>
<td>Amplitude power spectral density</td>
<td>[Cohen, 2008]</td>
<td>⭐️⭐️</td>
</tr>
<tr>
<td>CV</td>
<td>Coherence Value</td>
<td>[Colgin et al., 2009]</td>
<td>⭐️⭐️</td>
</tr>
<tr>
<td>KL-MI</td>
<td>Kullback-Leibler based modulation index</td>
<td>[Tort et al., 2010]</td>
<td>⭐️⭐️</td>
</tr>
<tr>
<td>ERPAC</td>
<td>Event related phase amplitude coupling</td>
<td>[Voytek et al., 2012]</td>
<td>⭐️⭐️⭐️</td>
</tr>
</tbody>
</table>

- ⭐️ Sensitive to coupling phase (Negative feature)
- ⭐️⭐️ Need long data length
- ⭐️⭐️ Only works on event-related datasets
- ⭐️⭐️⭐️ Potentially not capable of calculating coupling intensity
Summary

Stationary:

• Fourier transform

• Power spectral density (Welch's method)

Time-resolved:

• Wavelet transform

• Filtering & Hilbert transform
Summary

Stationary:
- Fourier transform
- Power spectral density (Welch's method)

Time-resolved:
- Wavelet transform
- Filtering & Hilbert transform
Summary

Stationary:
- Fourier transform
- Power spectral density (Welch's method)

Time-resolved:
- Wavelet transform
- Filtering & Hilbert transform
Summary

Stationary:
- Fourier transform
- Power spectral density (Welch's method)

Time-resolved:
- Wavelet transform
- Filtering & Hilbert transform
Summary

Stationary:

- Fourier transform
- Power spectral density (Welch's method)

Time-resolved:

- Wavelet transform
- Filtering & Hilbert transform