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Why spectral analysis?

* MEG signals contain a wide range of
components

* Electrophysiology vs. BOLD: what 1is
'activity'?
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Why spectral analysis?

MEG signals contain a wide range of
components
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How to do 1t? Brainstorm!

Comment: |Power,1-60H7 |

Time definition | rFrequency defintion —————————————

® Same as input files (@ Linear (start:step:stop)
[-2.500s : 1.67ms : 3.000s] Il'l'GO ‘

|
|
|
() Group in time bands (ms) | =
| ) Log (start:N:stop)
I !- _—— s =

% ! Pipeline editor

rProcess selection |
| -“::!s - + ¥ x ﬁ% i |

| Power spectrum density (Welch)

I-i:'s Group in frequency bands (Hz)

-

-Process options _ b
| Time window:| -2.500] -[  3.000]s [ Allfile [plgamma2/ 60, 90/ mean -
window length:| 1.000] s | Generate | | eas

Window overlap ratio: % "Morle; ATy B =5 = o - B -
| Central frequency: | 1|Hz (defaut=1)

! PSD options: Time resolution (FWHM): s (cdefautt=3)

| cancel || Run |

rProcessing options -

Compute the following measure:
(> None (save complex values)
® power

Estimated output file size: 408 Mb
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Methods covered today

Two maln groups:

* Estimation of spectral power (stationary)
VsS.

* Localization of Power in time & frequency
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Methods covered today

Two maln groups:

* Estimation of spectral power (stationary)
VsS.

* Localization of Power in time & frequency
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Methods covered today

Two maln groups:

* Estimation of spectral power (stationary)

VS.

* Localization of Power in time & frequency

Usage:

- ®* Quality check (noise
level)
* Resting-state
dynamics

~* Extended task
periods

Usage:

* Task-induced
responses

* Transient
oscillatory phenomena
(HFOs)



Methods covered today

Two maln groups:

* Estimation of spectral power (stationary)
VS.

* Localization of Power 1in time & frequency

Stationary:
~* Fourier transform
* Power spectral

density (Welch's
- method)



Methods covered today

Two maln groups:

* Estimation of spectral power (stationary)
VS.

* Localization of Power 1in time & frequency

Stationary: Time-resolved:
~* Fourier transform * Wavelet transform

* Power spectral * Filtering & Hilbert
density (Welch's transform

- method)



Methods covered today

Two maln groups:

* Estimation of spectral power (stationary)
VS.

* Localization of Power in time & frequency

Short introduction to cross-frequency coupling
measures
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R. Canolty, et al., Science, 2006.



Example signal

* Concepts will be illustrated using the
following signal (




Example signal

Concepts will be illustrated using the
following signal

MEG source signal from visual cortex
4 seconds

Sampling frequency: 600 Hz



Example signal

Concepts will be illustrated using the
following signal

MEG source signal from visual cortex
4 seconds
Sampling frequency: 600 Hz

Visual stimulus



Contents

Stationary: Time-resolved:

. * Wavelet transform

* Power spectral * Filtering & Hilbert
density (Welch's transform

method)



(Fast) Fourier Transform,
FET

Transforms a signal from time to
frequency domain.

Hugely important in many fields of
science and engineering.

Not so powerful in its raw form for
estimating spectral components in
neural signals

BUT: forms the basis for many of the
following methods



(De-)Composing a signal
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(De-)Composing a signal

0 sec Time 1 sec
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Power

(De-)Composing a signal

0 sec Time 1 sec

0 Hz Frequency 50 Hz Frequency 0 Hz
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(De-)Composing a signal
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* FFT output is symmetric,
second half usually removed

* Peaks in frequency domain
correspond to an oscillatory
component in time domain

0 Hz Frequency 50 Hz
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(De-)Composing a signal
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* FFT output is symmetric,
second half usually removed

* Peaks in frequency domain
correspond to an oscillatory
component in time domain



Power

(De-)Composing a signal
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* FFT output is symmetric,
second half usually removed

* Peaks in frequency domain
correspond to an oscillatory
component in time domain
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(De-)Composing a signal
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Power

(De-)Composing a signal
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* Number of samples in time =
number of samples in frequency
(1/2 without 'negative
frequencies')

* Higher sampling rate can
resolve higher frequencies
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Power
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Fourlier Transform
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°* We can see a peak in the
/ alpha band (8-12 Hz)
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Power

Fourlier Transform
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°* We can see a peak in the
alpha band (8-12 Hz)

* Sometimes helpful to
display frequency axis in
log-scale (see next)



Linear- vs. Log-scaled
spectrum

Compare:
1l or 2 cycles per second

50 or 51 cycles per second



Linear- vs. Log-scaled

spectrum

/\/\/\/\/

Sinusoids linearly spaced from 1 Hz to 17 Hz

1 Hz

5 Hz

9 Hz

13 Hz

17 Hz



Linear- vs. Log-scaled

spectrum

Sinusoids log spaced from 1 Hz to 17 Hz

412 Hz

8.37 Hz

17 Hz



Power

Fourlier Transform

P\ W g i ™

0.5
0.4r

0.3

B2

1.5 8 6 13 30 70
Frequency (Hz)

150 300

* We can see a peak in the
alpha band (8-12 Hz)

* Sometimes helpful to
display frequency axis in
log-scale (see next)



Power
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* We can see a peak in the
alpha band (8-12 Hz)

* Sometimes helpful to
display frequency axis in
log-scale (see next)

* Power usually decreases
at higher frequencies
> 1/f phenomenon
> Log-scaling the power
axis



Power
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Fourlier Transform
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* We can see a peak in the
alpha band (8-12 Hz)

* Sometimes helpful to
display frequency axis in
log-scale (see next)

* Power usually decreases
at higher frequencies
> 1/f phenomenon
> Log-scaling the power
axis

* Raw FFT can be very noisy
> see next



Contents

Stationary: Time-resolved:

* Fourier transform * Wavelet transform

* Power spectral * Filtering & Hilbert
density (Welch's transform

method)



Power spectral density
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Power spectral density




Power

Power spectral density
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* Repeated averaging
over sliding windows
decreases noise in the
estimation

* Resulting spectrum is
less noisy



Power

PSD: effect of window size
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PSD: effect of window size
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PSD: effect of window size
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Power

PSD: effect of window size

* Window length
determines frequency
resolution

* Smaller window: lower
resolution, more
averaging/ less noise
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PSD:

effect of window size
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* Window length
determines frequency
resolution

* Smaller window: lower
resolution, more
averaging/ less noise



Contents

Stationary: Time-resolved:

* Fourier transform .

* Power spectral * Filtering & Hilbert
density (Welch's transform

method)
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Time-frequency analysis

Analysis of transient oscillatory activity

Examples: auditory cortex / motor cortex

Event-related synchronization vs.

desynchronization
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Posterior

Build-up of choice predictive
activity in motor cortex
(Donner et al.,



Wavelet transform

\/\}
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Morlet wavelet (used
in Brainstorm):

* Sine wave, power 1s
modulated in time
with a gaussian
centered at time zero

* Serves as a
'template'



Wavelet transform

WW\MWUM

* Wavelet is swept over and
'compared with' the signal

* From this similarity
measure we can estimate and
plot the power over time




Wavelet transform

* Wavelet is contracted and
expanded to estimate power
over different center
frequencies



Wavelet transform

P\ W g i ™

* Wavelet is contracted and
expanded to estimate power
over different center
frequencies

* Important: time and
frequency resolution changes
for different frequencies

> Compare with PSD window
length



Wavelet transform




Wavelet transform
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* Repeating this over a
range of center
frequencies produces a
time-frequency map



Wavelet transform
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* Repeating this over a
range of center
frequencies produces a
time-frequency map

* Remember the 1/f
phenomenon: high
frequencies tend to have
less power



Wavelet transform
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* Repeating this over a
range of center
frequencies produces a
time-frequency map

* Remember the 1/f
phenomenon: high
frequencies tend to have
less power

* Map can be normalized
using a z-score based on
the mean and std of a
'baseline period’



Wavelet transform

et 1 AR LV

150

Ty
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frequencies produces a
time-frequency map
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Wavelet transform
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* Map can be normalized
using a z-score based on
the mean and std of a
'baseline period’

* What is the right
baseline?!?



Wavelet transform

'baseline'
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* Map can be normalized
using a z-score based on
the mean and std of a
'baseline period’

* What is the right
baseline?!?



Wavelet transform
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150
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* Changing the parameters
of the 'mother wavelet'
affects time vs. Frequency
resolution of the results
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Wavelet transform
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* Changing the parameters
of the 'mother wavelet'
affects time vs. Frequency
resolution of the results
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Evoked vs 1nduced responses

Event related oscillator activity
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Evoked vs 1nduced responses

Event related oscillator activity
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Evoked vs 1nduced responses

Event related oscillator activity
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Evoked vs induced
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* Averaging

— 10 trials



Evoked vs induced
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* Averaging

— 10 trials
— 20 trials



Evoked vs 1nduced responses

15

156 T T .
‘ ;M * Averaging
10 — 10 trials
— 20 trials
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Contents

Stationary: Time-resolved:

* Fourier transform * Wavelet transform

* Power spectral * Filtering & Hilbert
density (Welch's transform

method)



Hilbert transform

P\ Vet e

* Useful for estimating time-resolved
power (or phase) in a pre-defined
frequency band (e.g. Delta: 2-4 Hz)



Hilbert transform

P\ Vet e

2—-4Hz

\/\N\/\W\/\

* Useful for estimating time-resolved
power (or phase) in a pre-defined
frequency band (e.g. Delta: 2-4 Hz)

* Signal is first filtered in the
specified band



Hilbert transform

2 — 4 Hz

MW

* Useful for estimating time-resolved
power (or phase) in a pre-defined
frequency band (e.g. Delta: 2-4 Hz)

* Signal is first filtered in the
specified band

* Envelope (power) is computed using the
Hilbert transform



Hilbert transform

(WA
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Hilbert transform

2 — 4 Hz

~ NS NN —oN N

* The hilbert transform can also extract
the phase of the bandpassed signal in time



Hilbert transform
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2pi
0
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* The hilbert transform can also extract
the phase of the bandpassed signal in time
1.5™pi pi/2
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Hilbert transform

P\ Vet e

2—-4Hz
2pi
0
: 0/ 2pi
* The hilbert transform can also extract
the phase of the bandpassed signal in time
* Usage: phase-locking value, stimulus- 1.5%pi pi/2

brain coupling, phase-amplitude coupling

> All of that later in the day pi



Hilbert vs.

Wavelet

* Hilbert method in BST uses FIR filters

* Important:

Stop signals
in this band

frequency response of the
bandpass filter

/

\

Pass signals
in this band

Stop signals
in this band

Frequency



Hilbert vs. Wavelet

* Hilbert method in BST uses FIR filters

* Important: frequency response of the
bandpass filter

* Wavelets more localized around center
frequency

|

Amplitude

f Frequency f



Defining frequency bands

* 'Based on the literature': many definitions

Power density(u V7Hz)




Defining frequency bands

* Should I collapse over frequency bands or
keep the full spectrum?

* Information might be lost (peaks)

| 3 6 ﬁls '310 '7l0 1'50 delta theta alpha beta gammail gamma2



Defining frequency bands

* Should I collapse over frequency bands or
keep the full spectrum?

Sometimes necessary for reducing
dimensionality (e.g. 1n source space)

Can increase sensitivity (due to
averaging)

Gamma 60-90 Hz Beta 15-30 Hz



Cross-frequency Coupling

e Cross frequency coupling (CFC):
— Interaction between oscillations at different frequency bands

e Several synchronized neuronal assemblies in the brain:
— Each supports a frequency band of the network rhythm

e Relationship between these frequencies:
— Interaction between local neural circuits
— Changing of intrinsic properties in each circuit

G. Buzsaki. Cerebral Cortex, 1996
A. Bragin, et al., The Journal of Neuroscience, 1995.

A. Roopun, et al., Frontiers in Neuroscience, 2008. Samiee, MEG TRAINING, March 2015



Types of CFC

* Types:

— Phase-phase coupling

— Amplitude-amplitude coupling
— Phase-amplitude coupling

\

Jirsa et al., Front. Neurosci. , 2013

Jirsa et al., Front. Neurosci. , 2013

X
W

Jirsa et al., Front. Neurosci. , 2013

Samiee, MEG TRAINING, March 2015 8



Cross-frequency Phase-amplitude

Coupling

* Phase-amplitude coupling

FAVAVA

. Canolty and Night, Trends Cogn Sci, 2010

o

Samiee, MEG TRAINING, March 2015 9



Cross-frequency Phase-amplitude

Coupling

* Phase-amplitude coupling

v’ Plausible physiological mechanisms
* Low frequency phase reflects local neuronal excitability
* High frequency power increases reflect:

— A general increase in population synaptic activity (broad-band power

increase)

— Selective activation of a connected neuronal subnetwork (narrow-

band power increase)

v’ Functional correlations

Canolty and Night, Trends Cogn Sci, 2010 Samiee, MEG TRAINING, March 2015



Functional Correlations

e Several studies have been conducted in this field

— Phase of the low-frequency theta (4 to 8 hertz) rhythm
modulates power in the high gamma (80 to 150 hertz)
band

arbitrary units
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frequency for amplitude (Hz)

2 4 6 8 10 12 14 16 18 20

500 -250 0 250 500
time (ms) frequency for phase (Hz)

¢ R.Canolty, et al., Science, 2006. Samiee, MEG TRAINING, March 2015 11



Measuring Cross-frequency Coupling

* Several algorithms available

— Each proper for a particular case

— No single method has been elected as a preferred standard

so far

Detecting coupled frequencies
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Measuring coupling intensity
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Samiee, MEG TRAINING, March 2015
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Measuring Cross-frequency Coupling

 Available measures:

1 ESC The envelope to signal correlation [Bruns and Eckhorn, 2004] * *
2 PLV Phase-locking value [ Vanhatalo et al., 2004 ] *
3 MVL  Mean vector length [Canolty et al., 2006] *

4 GLM  The general linear model measure [Penny et al., 2008] *
5 APSD  Amplitude power spectral density [Cohen, 2008] *
6 cVv Coherence Value [Colgin et al., 2009] *
7 KL-MI  Kullback-Leibler based modulation index  [Tort et al., 2010] *

8 ERPAC Event related phase amplitude coupling [Voytek et al., 2012] **

* Sensitive to coupling phase (Negative feature)
* Need long data length
Y Only works on event-related datasets

* Potentially not capable of calculating coupling intensity
Samiee, MEG TRAINING, March 2015



summary

Stationary: Time-resolved:

* Fourier transform * Wavelet transform

* Power spectral * Filtering & Hilbert
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